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ABSTRACT
Let X, Y and 2Z be metric spaces, with X compact and Y of lower
dimension than either X or Z. Let C(X,Z) be the class of continuous

mappings F from X into 2, and F

v the subclass of those F that can be

factored through Y in the form F = f 0 ¢ where ¢ € C[X,Y]. Using
e-entropy, uniform estimates are obtained for the maximal size of point
inverses ¢-1(y), for arbitrary ¢, and for special choices of Y. These
are then used to study the size of the uniform closure of FY in  C[X.2],
and thus the class of mappings F between X and 2Z that can be
approximated uniformly by a special family of simpler mappings. Similar

results are obtained when f 1is required to be Lipschitz, but ¢ is

unrestricted.

AMS (MOS) Subject Classifications: 05C15, 26A72, 26A16, 41A30, 41A65, 54C05
Key Words: mapping, complexity, entropy dimension, § -dispersed, Lipschitz

mapping, point-inverse, graph theory, chromatic
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SIGNIFICANCE AND EXPLANATION

v

A function of three variables is often regarded as inherently simpler
than a function of five variables, and there has been much attention given to

the nature of complicated functions that can be expressed exactly in various

ways in terms of simpler functions. From the viewpoint of computation,

however, it is sufficient if a function F can be approximated arbitrarily

well by combinations of simple functions. This paper deals with the general

structure of this process, and obtains specific theorems that help to describe

its limitations, and necessary conditions on the functions F for which this

is possible. More detailed applications will be made in the future.
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DISPERSION MAPPING THEOREMS

Re Creighton Buck

1. Introduction

Many familiar mathematical questions can be restated in the following
form: "When is A more complex than B, and how do you put the answer in
quantitative form?" This has been answered in a variety of ways, depending on
the category to which A and B telong. Two recursive functions have been
compared by their index numbers in any universal listing (Kolmogorov: see
[7])« 1In classical analysis, a function of three real variables seems more
complicated than a function of only two, while a function with continuous
fourth derivatives seems simpler than one that is merely continuous.
Vitushkin discovered that the index n/p is a useful measure of the
complexity of the entire class of functions of n real variables having
continuous p-th derivatives [4;5]. However, this approach is not
appropriate if one is dealing with functions that are merely continuous
(p = 0), or when one is dealing with individual functions and not classes.
Moreover, one would like to use the term "simple" for functions that can be
approximated arbitrarily well by simple functions, even though they themselves
are not "simple".

Nor is it enough merely to count the number of variables. A function of
the form
(1) F(x,y,z) = f(g(x,y), h(y,z))

is a function of three real variables, but since it is built from functions of

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and
the National Science Foundation under Grant No. MCS78-07244.




two variables, it ought to be quantitatively simpler than the general

continuous function of three variables.

Several years ago, I observed that such questions can also be stated in
terms of mapping diagrams. (See [1].) For example, consider those functions
of five variables that can be represented in the format {
(2) F(x,y,z,u,v) = f(¢(x,y,2), u,v)
in terms of continuous functions of only three variables. First suppress
(u,v) by introducing 2z = C[RZ], and writing F(x,y,z,u,v) as

F(x,y,z)(u,v), so that F is now seen as a function from R3 to Z. Then,

3

(2) requires that F = £ 0 ¢ where ¢ is a continuous function from R to

R and f 1is a continuous function from R to 2. Thus, (2) asks us to
3

examine those maps F from R to Z which can be factored through R, as

shown in the diagram below:

Other examples can be treated in a similar way. For example, to examine

4 2
«1), first introduce special maps ¢ from R to R of the form

®(t1’t2’t3't4) = (g(t1,t2), h(t3,t4)):
R2 x R2 = R4
9 l h l ¢ 12 v
R x R = R
4 3

Then construct X CR, homeomorphic to R”?, by the special embedding
(x,y,z2) > (%x,y,¥,2)« Then, the class of mappings F with the special
representation (1) can be regarded as those maps of X to R which factor

through R? by one of the special maps ¢, as- shown below:

I ——

vy
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Examination of these suggests that one study a general factoring
problem. Choose spaces X, Y, and Z, and then within the class C[X,Z] of
all continuous mappings F from X into Z we identify the subclass F, of
those F that can be factored through Y, F = f 0 4, regarding these as

"simple".

The objecive is to find properties that are characteristic of the maps in

P, and of those mappings that can be approximated uniformly by mappings in

¥

F In particular, we would like to know conditions on X, Y, and Z that

v
guarantee that Fy is a small subset of C[X,Z], and find quantitative
estimates for the size of Fy.

The results in the present paper are only a beginning, intended to show
that useful theorems can be obtained in a number of cases, related directly to
problems dealing with the approximate complexity of functions. The approach
is via Kolmogoroff e-entropy and entropy dimension, and some of the results
obtained in Section 3 on dispersion functions may have wider usefulness in the
study of continuous mappings; the combinatorial lemma on colored graphs may

also be of interest, as may be the observtions on dimension increasing maps in

Section 5.
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2. Heuristic arguments

Let X and Y be metric spaces and C([X,Y] the space of all continuous
maps from X into Y, with the uniform metric. We regard Y as simpler
than X if Y can be faithfully embedded in X but not conversely. In this
case, any ¢ € C[X,Y] must fail to be 1-to-1, and must therefore compress
some complex aspect of X. If c(S) is an appropriate quantitative measure

of the complexity of subsets S of X, then since

we are led to hope that

-1
c(X) = {c(Y)} x {average value of c(¢ vy)}
and dividing by c(Y), that
(3)

c(X)

s S S

YEY

Note that the right side is independent of ¢.

This heuristic reasoning has led to the conjecture that when Y is
simpler than X, every admissible mapping ¢ from X into Y must have at
least one point-inverse ¢-1y which achieves at least a certain minimal
complexity, independent of ¢.

Results of this type already exist in the literature. If

c(s) = 2dim(s)

where dim(S) is the classical topological dimension of &,
then (3) holds since it is equivalent to the assertion that any continuous map
from a space X into a space Y of smaller (finite) dimension must have a
point-inverse of dimension dim(X) = dim(Y) [(3].

For our purposes we need analogues of this, using a measure c(S)

related to Kolmogorov entropy. If S is an infinite subset of a compact




metric space, and & > 0, then a §-dispersed subset of S 1is a set

x,,xz,...,x

m Such that d(xi,xj) > 8 for all i # j. Then, for c(S) we

will use
(4) N(S,8) = the maximum number of points in a é-dispersed
subset of S .
The rate of increase of N(S,8), as & decreases, describes the size or
capacity of S. If N(s,8) = csP as 6§+ 0, we say that S has entropy
dimension p. BAn n-cell has entropy dimension n. Sets in ' with
fractional entropy dimension are easily constructed, and numerous examples can
be seen in the fascinating book by Mandelbrot [6].
If X and Y are metric spaces, with X compact, and ¢ € C[X,Y], set
(5) M($,8) = max N(6 'y,8) .
yeY
This is integer valued, and is the maximum § dispersion of any point-inverse
of ¢ Finally, with the conjecture (3) in mind, we say that C[X,Y] admits
a dispersion function K(§) if it is true that K(§) is an unbounded
increasing function of § such that for all sufficiently small 6 and any
mapping ¢ in C[X,Y], M(¢,9) > K(8). In the next section, we show that
certain classes of mappings admit dispersion functions; we conjecture that

this is always the case when Y is simpler than X.

3. Dispersion mapping theorems

In this section, we obtain dispersion functions for the class of real
valued functions on a p=-cell.
let A and B be compact metric spaces, each arcwise connected, and let

X = A x B, with the metric

d(x,,xz) = d(a,,az) + d(b,,bz) v

o o e
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Theorem 1. A dispersion function for C[X,R] is given by

(6) K(8) = the smaller of N(A,8), N(BR,8) .

Proof: Iet ¢ € C[X,R]. For any a € A, let B = {a} x B, and consider
e a

i i}

the 1mage sets :(Ba). Since B 1is connected, each is an interval 155 e,

reals. If the intersection of all these intervals is nonempty, choose a real

number v in the intersection and set § = $-1(v). Then S 1is a subset of
X that meets each of the sets B,. Given & > 0, let N = N(A,8) and
choose points a ¢ A, k=1,2,...,N that are d-dispersed, and then

bk £ B so that - (ak,bk) € S. These form a S§-dispersed set of N

points of S, and we have shown that

M($,8) > N(s,8) > N = N(A,9) .

Suppose now that i Ia is empty. Choose a' and a" in A so that

I,» and I, are disjoint, and a real number v 1lying between these
intervals. Again, set S = ¢—1(v); any arc in X Jjoining a point of B
and a point of Ea" must intersect S. Given & > 0, let N = N(B,8) and

choose N points bk in B, O&-dispersed. let B be an arc in A with end

ints a',a" and let Bk be the arc g x {bk} in X, connecting B,,

nd Biw, and X, a point of Bk i . 8« Since Bi and Bj are everywhere

¢ apart in X, the N points x, are &~dispersed in S and

M($,95) > N(s,d) > N = N(B,§), completing (6).

For a k=cell, we have N(Ik,1) = 2k, N(Ik,1/m) = (m + 1)k and in

general, N(Ik,é) 3 §_k. If we factor a p-cell X as 1P= A x B, where A

and B are cells of dimension [p/2] and p - [p/2], Theorem 1 gives us:

Oorollary: If I = [0,1), the class c(1P,R] has a dispersion function i 4

6'[?/2] gy

K(8) with K(i/m) = (m + N(P/2] ana, as 6 + 0, k(&) >

g vy e
-y N by
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This estimate is not best possible. The heuristic argument in Section 2
suggests that a correct value ought to be K(§) = N(Ip,d)/N(I,G) = 6-(p-1).
We verify this next.

Theorem 2. A dispersion function for c(IP,Rr] is given by

K(8) = ((c/OP7"]  where
(7) ew 22 FE
We reduce the proof of this to a combinatorial problem on colored graphs,

which in turn is proved by induction on p. The elementary proof given below
was discovered after I had seen an elegant but much more complicated argument
by Andreas Blass, which also produced a far smaller value for C.
Proof: Iet n be an integer large than 15 and 6 = 1/(n - 1). In the p-
cell 1IP, construct the regular rectangular lattice of vertices Pk spaced
evenly with separation §; if k is the multi-index (k1,k2,...,kp), with
0 ¢ kj < p, then pk = &k. Let ¢ € C[X,R] and v - ¢(pk). If these
nP real numbers are arranged in increasing size, two possibilities arise.
Suppose that at least a third of these values coincide, all being equal to a
number v. In this case, S = ¢-1(v) contains a 6-dispersed subset of

size nP/3, and M(4,9) 2 /3 > K(8), as given by (7). Suppose now that
fewer than a third of the values Vy are coincident; then we can choose a
real number v, distinct from all the Vi but such that at least a third of
them are larger than v and a third are smaller. We will show that

S = ¢ '(v) obeys N(S,8) 3 K(6).

Color the lattice point P "red" if ¢(Pk) g > v and "blue" if
¢(Pk) < ve In the p-cell X, a line segment will be called an "RB edge" if

it is parallel to an axis and its end points have different colors. Observe

that any RB edge must intersect S, and that any two disjoint RB edges

SR i 0 o




are everywhere 5 apart; thus, if we can find N mutually disjoint
edges in X, we will have a 0~dispersed subset of S8 of size

lemma. Color the nP regular lattice points of the p-cell red or blue in

such a way that at least anf  are of each color; @ < B < 1/2. 'Then, the

number of disjoint RB edges is at least

(8) p-1
Crim P2
2 1fn2 ¥ .
Proof: If p = 2, then the n? lattice points in the unit square form n
rows, each of which is either solid red, solid blue, or mixed. Every mixed

row contains an RB edge so that if there are at least £n mixed rows, the
lemma holds. Suppose instead that there are fewer than B8n mixed rows. The
remaining rows cannot all be solid blue for then there would be less than

(n)(Bn) = an red vertices in the square, contradicting the hypothesis. We
conclude that the square must then have at least one solid red row and one
solid blue row, and joining corresponding vertices, we obtain n RR edges.

Suppose now that the lemma has been proved for p cells, and consider a
colored (p + 1)-cell having at least Bnp+1 vertices of each color. These
lie in n parallel sheets, each a p-cell. Call a sheet (mostly) red if it
contains fewer than Bnp/2 blue vertices; a blue sheet is the dual. Aall
other sheets are called mixed. Suppose first that there are fewer than gn/2
mixed sheets in the (p + 1)-cell. If there were no red sheets, then the total
number of red vertices would be less than
(Bn/2)(1 - 8/2)n" + (n - 8n/2)(8nF/2) < gnP*]
which contradicts the hypotheses. Arguing symmetrically, there must exist at

least one red sheet and at least one blue sheet. Matching these sheets, there

must be at least

nP - 2(g/2)nP = (1 - g)nP !




red vertices that lie above or below a corresponding blue vertex. Joinina
these, orthogonally to the sheets, we produce (1 - B)np disjoint RR edges,
and since this number exceeds what is required by (8), the lemma holds.

The other alternative is that there are at least £n/2 mixed sheets in
the (p + 1)-cell. We apply the lemma to each, observing that £ has now been
replaced by B8/2. Accordingly, each sheet contains at least

" p-1
2 {(8/2)n2 P’?}

disjoint RB edges. BAmong all the £8n/2 mixed sheets, there will be

2(Bn/2)P

-(p+1)/2}p
2p(p-1)/2

= 2{fn2

mutually disjoint RB edges, thus proving the lemma.
To complete the proof of Theorem 2, we apply the lemma with g = 1/3.
For the mapping class C[Ip,Rk], with p > k, the heuristic argument
suggests that a correct dispersion function ought to be of the form
X(8) = Cé_(p-k). However, we have not been able to obtain this, except as
shown above when k = 1. For the record, we record the following incomplete
result which is easily established by a homotopy argument.

Theorem 3. If ¢ € C[Ip,R2], with p > 3, then

M($,1) > 2 .

4. The closure of PY

We return to the general problems discussed in the introduction dealing
with the size of the class of factorable mappings between X and 2Z. Let Y,
Y, and Z be metric spaces with X compact, and Y simpler than either

X or 2Z. Let Fy be the class of mappings F from X into Z that can be

e ——————————— e ————
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factored through Y, as shown below:

ST eI
N
F

In this section, we examine the situation in which ¢ 1is required to be

(9) X

Ne— <

continuous, while f 1is unrestricted. We wish to find properties of the
class Fy which show that only a very restricted subclass of C[X,Z] can be
uniformly approximated by the mappings in Fy. In the next section, we
reverse the hypotheses, allowing ¢ to be unrestricted but requiring that the
functions f obey a uniform Lipschitz condition.

Theorem 4. Let F be a sequence of mappings for X into 2Z, converging

uniformly to a continuous mapping g. Then, for any § > 0,

(10) M(g,8) > lim sup M(F, ,6) .
£ Sy

Proof: Since M(F,8) < N(X,8) for any F : X + 2, the right side of (10) is

an integer N, and there is a subsequence with M(Fk :8) = N for all n.

Iet A C XN be the compact set of x = (x1,x2,...,xN? such that
fxl - le bd § for i # j. Define a continuous function G on A by
5(x) = Ta* Ig(xi) - g(xj)l. Suppose that F belongs to the subsequence
Pp ¢ ;iice M(F,8) = N, we can choose a point x € A and z € Z such

that F(xi)

z for all i = 1,2,¢¢¢,Ne Then, for any i and 3j,

lgtx;) = glx)] < lgtx;) = 2] + |2 - g(xj)l

A

) + |F(x — v
lg(xi) (xi)l | F( j) 9(xj)|
and G(x) < 2lg = Fl. Since G 1is continuous on A and {Fn} converges
o g, there must exist x € A such that G(x) = 0. Accordingly, there must
exist points XqrXopeee Xy §~dispersed, with g(x1) = g(xz) = ees = g(xN),

showing that M(g,§) > N.

T b i & of




Return to the mapping diagram (9), and observe that if F = f o ¢, then
any point-inverse for ¢ is automatically a subset of a point-inverse for
F, so that M(F,8) > M(¢,9).

Theorem 5. Suppose that C[X,Y] admits the dispersion function KX(§).

Then, K(§) is also a dispersion function for the uniform closure of the

set FY Cix,z]. In particular, if g is a continuous mapping from X

into Z with

(11) Vim ing 2.9
s0 KO

then g cannot be approximated uniformly by mappings F € Fy.

Proof: sSince M(¢,6) > K(8) for any M(F,$) > M(¢,8) for any ¢ in
C[X,Y], K(6) is also a dispersion function for Fy. JZpplying the lemma, we
see that K(6) is automatically a dispersion function for the uniform closure
of Fy, and must therefore be a lower bound for M(g,68), if g can be
uniformly approximated by functions F in Fy. (We note that the same
argument applies to subclasses of C[X,Y]; if a function K(6) can be shown
to be a dispersion function for the functions ¢ in a subset § of
C[X,Y], then it is also one for the uniform closure of the class of
mappings F : X *> Z which factor through Y by means of some ¢ £ S.)

If we use the information in Theorem 2, we obtain:
m > 1 and suppose that g is a continuous mapping

Corollary 1. Ilet n

form I" into R® such that

v

1/(n=1) < 1 :

lim inf &M(g, 6) -

§+0 3(2

Then, g cannot be approximated uniformly on . by mappings of the |

form F(x) = f(¢(x)) where f is an arbitrary function on R to R" and

¢ 4is a continuous real valued function on I,

e A o5 T S N s I D S ~ o - - "




The argument used in Theorem 4 can also be used to compute expl

bounds for the distance from a given function g to the class P,, when (11

holds.
Corollary 2. If M(g,éo) < K(GO) = N, then

d(g:" ) g

= min max Ig(xi) - g(xj)|

x1,...,xN 35

§ dispersed .
o

Ll
2

Proof: Since we must have M(g,éo) i N - 1, the function G, introduced

the proof of Theorem 4, does not vanish in the set A and therefore has a

positive minimum Y. If F € Py then, for an optimal choice of i and 3,
Y < latx) - q(xj)l < 2lg - Fi

and Y/2 1is a lower bound for the distance from g to Fy.

Computation of the number Yy depends on the explicit nature of the

chosen function g. Homeomorphisms provide trivial illustrations. We have

(n/2] for any ¢ € C[In,R] and n > 2. If g is the identity map

M(4,1) > 2

n

of X onto itself, then this argument shows that its distance from F is

R

at least 1/2. If n > 3, Theorem 3 shows that the same holds for the

class PF e It does not seem likely that these bounds are sharp. We note
R

that g can be approximated by the mapping F ¢ Fp given by

-1
F(x) = (W,W,.e.,Ww) where x = (t1,t2,...,tn) and w = n

e =

tj' so that

lg - FIl = (1/2) ¥yn for n even and (1/2) vn - (1/n) when n is odd.

5. Lipschitz mappings

We now take Z = X and examine the nature of mappings F of X into
itself which can be factored through Y as F = f O ¢ where ¢ is now

unrestricted but f is required to be more than merely continuous.

(12) X ey

T
=




As before, Y 1is chosen of lower dimension than X. However, ¢ can now be
1-to-1, and if f were unrestricted, every map of X into X could be
factored as shown, including the identity map. Of course, if f(Y) = X, f
must be a dimension increasing map. It is known that there exist continuous
maps of a k-cell onto an m-cell for any n and m; the familiar Peano "space
filling curve”" maps I onto 12 by a function £ that is continuous, and is
1-to-1 on an uncountable subset of 1I. Accordingly, the identity map of 12
onto itself can be factored through I as f o0 ¢ with f continuous.
However, even a small degree of smoothness for f changes the situation, as

the next result shows.

Theorem 6. Iet X have entropy dimension p, and Y have entropy

dimension q, and let f be a mapping from Y into X of Lipschitz class

a Then, £f(Y) can have entropy dimension at most g/a, and thus cannot

be onto if a > g/p.
Proof: ILet N(f(Y),8) = N and choose yi € Y so that the points x, = f(yi)

form a d-dispersed set of N points in £(Y). If i # j, then

a
§¢ Ix, = le = [Ey) = eyl ¢ Bly, - yjl

/a

and lyi - yjl > (S/B)1 + Accordingly, the y, form a (6/3)1/a

dispersed
set of N points in Y. Since Y has entropy dimension q, N(Y,€e) = C e-q,

and therefore

a/a
N(E(Y),8) =N ¢ SB—
= 6q/a

showing that f(Y) has entropy dimension at most g/a.

We conjecture that this result is best possible, and that there are
mappings from 1™ onto I™ which belong to Lip(n/m), for every n < m;
indeed, it is easily seen that the Polya example of a Peano map from [0,1]

onto 12 is in Lip 1/2, as required.




*
Let Fy(a) be the class of mappings F from X into X which factor
through Y as f 0 ¢, with f in ©Lip a, but $ unrestricted. Since any
such map F obeys F(X) C f(Y)), we have an immediate corollary:

Corollary: If X and Y have entropy dimensions p and gq, respectively,

*
with p > q, and if a > g/p, then PY(a) does not contain C[X,X]:

indeed, no member of it can obey F(X) = X.

To obtain a corresponding result for uniform approximation, we must make
*
a slight change; let PY(a,B) be those F = f o ¢, where f € Lip(aq,B),
with a fixed Lipschitz constant B for all f.

Theorem 7. Let X and Y have entropy dimensions p and q, with

*
P > 9, and suppose that a > g/p. Then, Py(a,B) is not uniformly dense

in C[X,X]; every mapping g in C[X,X] that can be uniformly approximated

*
by the class P&(a,B) must fail to be onto, since g(X) will have entropy

dimension smaller than p.

Proof: Given & > 0, choose a set of N 6&-dispersed points in g(X), where
*
N = N(g(X),8). Suppose that there is F ¢ ry(a,s) with g - Fi < §/3.

then, if 1 %94,

et Z. = g(xi), and set b ¢(xi)

< Iz,l - zjl < Ig(xi) - F(xi)| + IF(xi) - F(xj)l + IF(xj) - q(xj)l
< 2l0g = Fll + [f(y,) - f(y))]
= i 3j
and
$ a
3 S Blyy =951 .

Accordingly, the y; form a set of N points of Y that are (6/(38))1/0

dispersed, and

1/a, c(3p V@

N(g(X),8) = N < N(Y,(6/3B) s

¢ince C, B, and q are independent of §, this shows that gq(X) has




entropy dimension at most gq/a, which by hypothesis is smaller than p, the
dimension of X.

There are many obvious remaining questions about the size and nature of
the sets P;(a,B) and their relationship to the entire space C[X,X].
Furthermore, the complexity measure N(S,d8) and those derived from it are not
the only ones of interest in this context. It would also be interesting to
é#amine these questions in a category different from that of spaces and

continuous mappings.
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